
BENEFISHER
Software Test Specification

Version 2.0
11/25/2014

TEAM WAKATI

!

TABLE OF CONTENTS

1. INTRODUCTION 3

1.1 PURPOSE	 4

1.2 SCOPE	 4

1.3 ABBREVIATIONS, ACRONYMS, AND DEFINITIONS	 4

1.4 REFERENCES	 6

1.5 OVERVIEW OF CONTENTS OF DOCUMENT	 6

2. TEST PLAN DESCRIPTION 7

2.1 PRODUCT SUMMARY	 7

2.2 RESPONSIBILITIES	 9

2.3 SCHEDULE	 9

3. TEST DESIGN SPECIFICATION 11

3.1 TESTING APPROACH	 11

3.2 FEATURE OR COMBINATION OF FEATURES NOT TO BE TESTED	 12

3.3 ENVIRONMENTAL NEEDS	 12

3.4 SUSPENSION / RESUMPTION CRITERIA	 12

3.5 RISKS AND CONTINGENCIES	 13

4. TEST SPECIFICATION 14

4.1 SEARCH	 17

4.2 MAP	 41

4.3 RESULTS	 53

5. REQUIREMENTS TRACEABILITY 65

9. APPROVALS 69

!
! of !2 69

!

1. INTRODUCTION  

This document is the Software Test Specification for the Benefisher project sponsored by Code for Sacramento, to
be completed by Team Wakati.

Project Team

Team Wakati is comprised of undergraduate students majoring in Computer Science at California State University,
Sacramento. The team members are enrolled in a two-semester senior project course required of all
undergraduate majors. Successful delivery of the desired software product will fulfill the senior project requirement
for the student team members.

Table 1.1 Team Wakati Members

Project Sponsor

Code for Sacramento is a Code for America Brigade, whose mission is "to help government work for the people,
by the people" [1]. Code4Sac has aligned the goal of improving access to public services data with their central
missions of “connecting citizens and governments to design better services” and “open[ing] civic data” [1]. To that
end, the sponsor has proposed the project under discussion.

Table 1.2 Code for America Representatives

 

Name Email Phone

Adrian Chambers adr510909@gmail.com (707) 430-3775

Anthony Cristiano cristiano@csus.edu (925) 321-7648

James Doan jhdoan@gmail.com (949) 690-4212

Daniel Green djgreensolving@gmail.com (209) 402-3658

Jesse Rosato jesse.rosato@gmail.com (916) 541-5386

Name Role Email

Brandon Pugh Brigade Captain bpugh143@gmail.com

Ash Roughani Community Organizer ash@publicinnovation.org

!
! of !3 69

!

1.1 Purpose
The purpose of the STS is to describe the plan for testing the software, and to specify the test cases and test
procedures necessary to demonstrate that the software satisfies the requirements as specified in the project’s
System Requirements Specification document.

 
1.2 Scope
The plan contains a list and brief description of the use cases to be tested and the software components
associated with each test case. The plan also provides a schedule for the testing and the assignment of team
members to their respective testing tasks. The process for documenting resolving software errors and/or
anomalies that are found during the testing is also specified. The test specification includes a list of the features to
be tested for each of the use cases, the description each test case needed to fully test the use case, and the test
procedures, or steps, necessary to execute each of the test cases.

 
1.3 Abbreviations, Acronyms, and Definitions

TERM DEFINITION

Applications Program Interface (API) Implemented declarations of how
a software component will interact with other software
components. A common example of an API is a web service that
provides data via a collection of resource addresses.

Microsoft Internet Explorer A Microsoft Windows web browser.

End-to End Testing Tests user scenarios and various path conditions by verifying that
the system runs and performs tasks accurately with the same of
data from beginning to end, as intended.

Google Chrome A multi-platform web browser.

Graphical User Interface (GUI) The visible, 'tactile' interface of a software system, usually a
mouse- or touch-based system.

Mozilla Firefox An open-source, multi-platform web browser.

N/A Not Applicable

Quality Assurance (QA) A set of methods for monitoring the software development
process to ensure quality deliverables.

Requirements Traceability Matrix (RTM) A series of rows and columns used to relate portions of a
software engineering document to specific requirements.

Software feature A distinguishing characteristic associated with a use case (e.g. its
functionality, performance, ease of use, performance, etc.).

!
! of !4 69

!

Table 1.3 Abbreviations, Acronyms, and Definitions

Sprint.ly A web application that helps organize software development
tasks.

TBD To Be Determined

Test case specification A specification of inputs, expected results, and a set of execution
steps associated with the testing of a feature (or features)
associated with a use case.

Software problem report A document reporting on any event that occurs during the testing
process which requires investigation (see appendix A for a copy
of the Software Problem Report form).

Software Design Specification (SDS) Software Design Specification

Software Requirements Specification (SRS) A software engineering document that establishes the
requirements for the system under consideration.

Software Testing Specification (STS) A software engineering document that establishes a baseline plan
for testing a system.

System test report A document summarizing testing activities and results. It also
contains an evaluation of the degree to which the software
product satisfies to the system requirements for each of the use
cases.

Test log A chronological record of relevant details about the execution of
tests.

Web browser An application for making HTTP requests and handling HTTP
responses by rendering web pages and executing their included
scripts.

TERM DEFINITION

!
! of !5 69

!

1.4 References
1. Software Requirements Specification. Chambers, A., Cristiano, A., Doan, J., Green, D., and Rosato, J.,

Team Wakati, Sacramento, CA, May 1, 2014.
2. Software Design Specification. Chambers, A., Cristiano, A., Doan, J., Green, D., and Rosato, J., Team

Wakati, Sacramento, CA, Oct. 17, 2014.

3. “AngularJS API Docs”, [online], AngularJS, https://docs.angularjs.org/api/ngMock/service/$httpBackend,
[Oct. 25, 2014].

4. "Nock", Teixeira, P. [online], https://github.com/pgte/nock, [Oct. 24, 2014].

5. “Open Eligibility Project”, [online], http://openeligibility.org/, [April 14, 2014]

1.5 Overview of Contents of Document

Test Plan Description

This section provides a summary of the Use Cases and the plan for carrying out the system test phase of the
team’s software development process. More specifically, this section contains a brief description of each Use Case
to be tested, the team member (or members) assigned to test each Use Case, the testing schedule, and the risk
management plan.

Test Design Specification

This section describes the details of the test approach, lists the use cases that are and are not to be tested, lists
the environmental needs, and details the pass/fail and suspension/resumption criteria.

Test Specification

This section contains subsections for each of the features to be tested. Each subsection specifies the use cases
to be tested, the procedures necessary to run the test cases, and the items being tested.

Requirements Traceability

This section provides for a cross referencing of each use case to its test specification and also to its design
components. The appropriate section and its title in each document are provided.

Approvals

This section contains the list of the key signatories necessary to sign-off on the STS, thereby agreeing to the
scope and content of the test plan and test cases specified within the document. Approval constitutes a
guarantee that the development team has produced a test specification sufficient for validating the software to be
delivered to the sponsor.

!
! of !6 69

https://docs.angularjs.org/api/ngMock/service/$httpBackend
https://github.com/pgte/nock
http://openeligibility.org/

!

2. TEST PLAN DESCRIPTION  

The Benefisher application is made up of many features that allow users to search for public services. Each feature
is made up of a number of use cases, and each use case can be tested in a number of ways. This section details
each of the features, their respective use cases, how Team Wakati plans to test each use case, who will be
responsible for testing specific use cases, the planned schedule, and the risk plan in case certain use cases are
not tested properly.

2.1 Product Summary
Benefisher is a public services search application that makes it easy for users to find the best services related to
their needs. Benefisher is a single-page application designed for ease-of-use. That simplicity belies a fairly complex
interconnection of components.

!
! of !7 69

!

Table 2.1 Feature-Use Case-Component Matrix

Features Use Cases Components

View Client Server Database

Search Search for Service
Search by Need
Search by Situation
Search by Need &
Situation
Browse
Select Pre-Defined Need
Select Pre-Defined
Situation
Remove from Screen
Save Search Query

layout.jade
index.jade
scripts.jade
map.jade
notification.jade

app.js
services.js
map-controller.js
search-service.js
interaction-
service.js
notification-
service.js

app.js
index.js
search.js
neuralnet.js
interactions.js

search_result
search_query

Map Search for Service
Browse Map
Interact with Results
Remove from Screen
Click Result on Map

layout.jade
index.jade
scripts.jade
search.jade

app.js
services.js
search-
controller.js
search-service.js
interaction-
service.js

app.js
index.js
search.js
neuralnet.js

search_result
search_query
search_result_int
eraction
service

Results Search for Service
Browse
Save Interaction Data
Interact with Results
Expand Results
Get Directions
Call Service
Navigate to Site
Email Service
Remove from Screen
Click Result on Map

layout.jade
index.jade
scripts.jade
results.jade
notifcation.jade

app.js
services.js
results-
controller.js
search-service.js
interaction-
service.js
notification-
service.js

app.js
index.js
search.js
interactions.js

search_result
search_result_int
eraction

!
! of !8 69

!

2.2 Responsibilities
The roles and responsibilities of each team member during the testing process are listed in the table below. These
roles are intended to be fluid, and each member may assume various roles as needed during testing.

Table 2.2 Testing Roles and Responsibilities

2.3 Schedule
The schedule for testing the application is as follows:

Figure 2.1 Testing Schedule

Name Role Responsibilities

Adrian Chambers Test Lead Oversee and coordinate test process.

Anthony Cristiano Recorder Record test results.

James Doan Tester Execute test procedures and augment automated tests.

Daniel Green Tester Execute test procedures and augment automated tests.

Jesse Rosato Tester Execute test procedures and augment automated tests.

!
! of !9 69

!

Table 2.3 Testing Activities

Activity Description Exit Criteria

Alpha Testing All tests are executed and recorded
according to specified test procedures.

All tests have been executed and reported.

Alpha Defect
Correction

Correct critical defects, and as many non-
critical defect as time allows. Add
remaining non-crtical defects to the
project's backlog.

All critical defects have been corrected,
and all non-critical defects have been
corrected or the time limit for this activity
has passed.

Beta Testing All tests are executed and recorded
according to specified test procedures.

All tests have been executed and reported.

Server Testing The application is installed on a staging
server, and all tests are executed and
recorded according to specified test
procedures.

All tests have been executed and reported.

Beta Defect
Correction

Correct critical defects, and as many non-
critical defect as time allows. Add
remaining non-crtical defects to the
project's backlog.

All critical defects have been corrected,
and all non-critical defects have been
corrected or the time limit for this activity
has passed.

Test Reporting Use the results of testing to generate the
test report.

The test report is complete.

!
! of !10 69

!

3. TEST DESIGN SPECIFICATION
This section describes the details of the test approach, lists the use cases that are and are not to be tested, the
environmental needs, and details the pass/fail and suspension/resumption criteria that Team Wakati is using to
ensure the quality of Benefisher.

3.1 Testing Approach
Team Wakati used the SRS [1] and the SDS [2] to prepare the design test cases and their procedures. These tests
are designed to verify the documentation previously listed.

To test Benefisher, Team Wakati is accounting for the following testing approaches:	

Conversion testing

Benefisher will be ingesting data from the Ohana API and must test that this information is being manipulated in
the correct way for use within the application.

Interface testing

Benefisher has many modules and components, including, but not limited to, search, map, and results.
Information from these components must be passed between each other and to other components throughout
the application. Interface testing will be used to evaluate whether these components and modules pass data and
control correctly to one another.

Regression testing

Benefisher is being developed in an iterative fashion. After each build/code change, Team Wakati’s environment is
set up to run all test cases against the current code base with each new push to the main repository [1].

Coverage testing

As per the SRS [1], Team Wakati will be writing their own unit tests on each new code push. Because of this
requirement, in addition to other testing methods, Team Wakati aims to have near 100% code coverage. This
means that 100% (or extremely close to 100%) of the source code written passes through a test at some point in
the testing suite.

Black box testing

Benefisher is an interactive frontward-facing web application. Due to the nature of this application, Team Wakati
will be conducting manual testing on the webpage to ensure that the application reacts and responds in the way
that it is expected to.

!
! of !11 69

!

White box testing

Team Wakati is utilizing unit and integration testing. All of the unit and integration test cases are constructed with
detailed knowledge of the code base, and have been automated to run with each code base change.

3.2 Feature or Combination of Features Not To Be Tested
The following list describes features that will be excluded during the testing phase

• Load Testing - Ability to cope with volume, load and hardware faults. Test cases will not include testing the
systems ability to deal with multiple yesers and any hardware issues that may arise.

• Session Time Out - Time related bugs such as session time out will not be tested. It is assumed that once a
user's session times out the session variables are lost and the user must start over

• Browser Cookies - The use of browser cookies will not be tested

• Server Reliability - Server uptime and reliability will not be tested

3.3 Environmental Needs
This subsection contains the properties that are needed to test the Benefisher application. An environment
matching the following criteria can be used in tests, and will later be referred to as Acceptance Server.

Client

• The environment will have a network connection. Preferably the environment will have a wireless connection to

simulate the network environment under which a typical user will access the Benefisher application.

• The environment will be able to run the web browser specified by a given test.

• That web browser will have JavaScript enabled.

Server

• The environment will access a test application database, used for storing application usage statistics.

• The environment will access a demo version of the Code for Sacramento data source.

3.4 Suspension / Resumption Criteria
Any test suspended before completion will be abandoned and resumed from the first step of the test. Any
preconditions for that test will be reestablished before the test is resumed. If a test cannot be completed due to
continue application failure, that will be noted in the report for that test case.

!
! of !12 69

!

3.5 Risks and contingencies
This subsection contains a list of the possible risks that are most likely to affect the testing schedule and the ability
to deliver the software according to schedule.

Schedule Overrun

If the testing process cannot proceed according to the schedule established in this document, the Server Testing
phase will be postponed.

Test Environment Shortfall

If the necessary devices or software specified in test cases are not available at the time of testing, efforts will be
made to procure them. Any test environments that cannot be procured will be noted in the relevant test reports.

Server Test Environment Delays

The setup of the server test environment poses a significant potential to delay the testing schedule. If this occurs,
an alternate server setup may be used, or the Server Testing phase may be postponed. If an alternative server
testing environment is used, this will be noted in the test report.

!
! of !13 69

!

4. TEST SPECIFICATION
This section contains subsections for each of the features to be tested. Each subsection specifies the USE CASES
to be tested, the procedures necessary to run the test cases, and the items being tested. Use Cases spanning
multiple features will be listed multiple times, but specified only in their first appearance. Each Use Case includes
automated tests. Figures 4.1 and 4.2 depict the sample output of running these automated tests. The following
table (4.1) details the procedures for executing these automated tests automated tests. This procedure is
executed for each Use Case:

Table 4.1 Automated Test Procedure

Automated Test Procedure

Step Description Expected Result

1 Execute testing suite by running 'grunt test' via
command line.

All tests pass.

2 Analyze test output. File a sprint.ly bug report
for any failing tests.

Any defects are added to sprint.ly backlog.

!
! of !14 69

!

Figure 4.1 Sample Screen Print of Successful Automated Server Test Results

!
! of !15 69

!

Figure 4.2 Sample Screen Print of Successful Automated Client Test Results

!
! of !16 69

!

4.1 Search
The Search feature manages user interactions with the application's search inputs, along with the end-to-end
process of retrieving results from the Code for Sacramento data source, sorting results in order of relevance, and
providing results to other components for display and interaction. This functionality presents several challenges in
testing:

• On the client-side, the SearchService component (search-service.js) makes HTTP requests to the server. During
automated client unit testing, HTTP requests must be intercepted, and their responses must be mocked. This is
achieved using Angular's $httpBackend service [3].

• On the server-side, the SearchController (search.js) component makes another HTTP request to the Code for
Sacramento data source. This HTTP request must be intercepted and its response must be mocked during
automated server integration tests. This is achieved using the Nock library [4].

• The SearchController also includes several database interactions. In automated server unit tests, the database
models are mocked, and injected into the SearchController class. In automated server integration tests, a clean
instance of a test database is prepared for each test.

!
! of !17 69

!

Search for Service (UC1)
The Search for Service use case is responsible for retrieving search results from the Code for Sacramento data
source and returning them to the user's client.

Automated Testing

Table 4.2 Test Case Description STS-1

Test Case ID: STS-1

Test Name: Search for Service (Automated)

Description: Ensure that components pass unit and integration testing, and perform basic operations as
expected.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Regression, White Box

!
! of !18 69

!

Table 4.3 Automated Test Description STS-1

Automated Test Description (STS-1)

Test Description Expected Result

SearchController (Server Unit Tests)

1 It should make an http request (all results found
in DB path)

Request endpoint is called and results are found.

2 It should make an http request (no results found
in DB path)

Request endpoint is called and results are not found.

3 It should render results on http success (all
results found in DB path)

A JSON array of results is rendered in an HTTP
response.

4 It should render results on http success (no
results found in DB path)

A JSON array of results is rendered in an HTTP
response.

5 It should limit search results by lat/long bounds The results found are within the given latitude and
longitude boundaries.

6 It should respond with 500 when http request
fails

An HTTP repsonse with status 500 is generated.

SearchController (Server Integration Tests)

7 It should respond with JSON When a search request is made, the response
should use the application/json content type.

8 It should respond with 500 when http request
fails

When the request to the external data source fails,
the server should respond with status 500.

SearchService (Client Unit Tests)

9 It should make HTTP request on search An HTTP request to the Code for Sacramento data
source is made

10 It should update subscribers with http response
data.

Subscribers are updated with an array of results.

11 It should create an error notification on an http
error

An error notification is created.

!
! of !19 69

!

Manual Testing

Table 4.4 Test Case Description STS-2

Table 4.5 Manual Test Procedure STS-2

Test Case ID: STS-2

Test Name: Search for Service (Manual)

Description: Ensure that the various terms/inputs return the expected result(s), each denoted on the
map with a marker and the results pane with an entry containing more information.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Black Box

Manual Test Procedure (STS-2)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Type "Clothing" in the What do I need?
search input bar.

An autocomplete dropdown is displayed below
the "What's my Need?" search input. All terms
except those containing the word 'Food' are
filtered from the autocomplete dropdown.

3 Click the first term or hit the enter key. A tag with the first term from the list is added to
the left of the "What's my situation?" search
input, and relevant results are displayed in the
results pane and on the map.

4 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !20 69

!

!
Figure 4.3 Search By Need Tag

!
! of !21 69

!

Search by Need (UC2)
Search by Need is a specific means of searching for services (UC1). The user searches for services for people with
a particular 'need', as defined by OEP terms [5]. The automated tests for this Use Case are covered by the tests
for UC1.

Search by Situation (UC3)
Search by Situation is a specific means of searching for services (UC1). The user searches for services for people
in a particular 'situation', as defined by OEP terms [5].

Automated Testing

The automated tests for this Use Case are covered by the tests for UC1.

Manual Testing

Table 4.6 Test Case Description STS-3

Test Case ID: STS-3

Test Name: Search by Situation (Manual)

Description: Ensure that various terms/inputs return the expected result, each denoted on the map with
a marker and the results pane with an entry containing more information.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

!
! of !22 69

!

Table 4.7 Manual Test Procedure STS-3

Manual Test Procedure (STS-3)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Type "Homeless" in the "What's my
situation?" search input.

An autocomplete dropdown is displayed below
the "What's my Situation?" search input. All
terms except those containing the word 'Veteran'
are filtered from the autocomplete dropdown.

3 Click the first term or hit the enter key. A tag with the first term from the list is added to
the left of the "What's my situation?" search
input, and relevant results are displayed in the
results pane and on the map.

4 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !23 69

!

!

Figure 4.4 Search By Situation Tag

!
! of !24 69

!

Search by Need & Situation (UC4)
Search by Need & Situation is a specific means of searching for services (UC1). The user searches for services for
people in a particular 'situation' and with a particular 'need', as defined by OEP terms [5].

Automated Testing

The automated tests for this Use Case are covered by the tests for UC1.

Manual Testing

Table 4.8 Test Case Description STS-4

Test Case ID: STS-4

Test Name: Search by Need & Situation (Manual)

Description: Ensure that various terms/inputs return the expected result, each denoted on the map with
a marker and the results pane with an entry containing more information.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

!
! of !25 69

!

Table 4.9 Manual Test Procedure STS-4

Manual Test Procedure (STS-4)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Type "Mothers" in the What is my
situation? search input bar.

An autocomplete dropdown is displayed below
the "What's my Situation?" search input. All
terms except those containing the word 'Veteran'
are filtered from the autocomplete dropdown.

3 Click the first term or hit the enter key. A tag with the first term from the list is added to
the left of the "What's my situation?" search
input. Relevant results are displayed in the results
pane and on the map.

4 Type "Daytime Care" in the What do I
need? search input bar.

An autocomplete dropdown is displayed below
the "What's my Need?" search input. All terms
except those containing the word 'Food' are
filtered from the autocomplete dropdown.

5 Click the first term or hits the enter key. A tag with the first term from the list is added to
the left of the "What's my need?" search input.
The results displayed in the results pane and on
the map are narrowed to those only relevant to
both the need and situation terms entered.

6 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !26 69

!

!

Figure 4.5 Search By Need and Situation Tags

!
! of !27 69

!

Browse Map (UC5)
This Use Case provides the primary means of user interaction with the application. The user can pan and zoom
the map in order to find needed services in a specific geographic location.

Automated Testing

Table 4.10 Test Case Description STS-5

Table 4.11 Automated Test Description STS-5

Test Case ID: STS-5

Test Name: Browse Map (Automated)

Description: The map should be created, centered and have markers reflecting the test data that is fed
to it.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, White Box

Automated Test Description (STS-5)

Test Description Expected Result

MapController (Client Unit Tests)

1 It should call search on map loaded
event with correct parameters.

Map results should appear in their correct
position as soon as the map is completely

loaded.

2 It should call search on map drag end
event with correct parameters.

Map results should appear in their correct
position after a user finishes panning the map.

3 It should call search on map zoom end
event with correct parameters.

Map results should appear in their correct
position after a user finishes zooming in/out the

map.

!
! of !28 69

!

Manual Testing

Table 4.12 Test Case Description STS-6

Table 4.13 Manual Test Procedure STS-6

Test Case ID: STS-6

Test Name: Browse Map (Manual)

Description: Ensure that any manipulations done to the map while browsing (including dragging and
zooming) perform the proper updates to the map element.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

Manual Test Procedure (STS-6)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Wait for map to get populated with
results

Map is populated with results in the area.

3 Move the map by dragging it. The map's results are updated to encompass
the new boundaries of the map.

4 Zoom into the map by scrolling up. The map's results are updated to encompass
the new boundaries of the map.

5 Zoom out of the map by scrolling down. The map's results are updated to encompass
the new boundaries of the map.

6 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !29 69

!

Figure 4.6 Map Zoomed Out

Figure 4.7 Map Zoomed In

!
! of !30 69

!

Select Predefined Need (UC6)
This Use Case provides an 'autocomplete' input for users to select one or more predefined 'needs' from a list of
OEP terms [5].

Automated Testing

The automated tests for this Use Case are covered by STS-1.

Manual Testing

Table 4.14 Test Case Description STS-7

Test Case ID: STS-7

Test Name: Select Predefined Need (Manual)

Description: Test 'need' text input autocomplete and tagging features.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

!
! of !31 69

!

Table 4.15 Manual Test Procedure STS-7

Manual Test Procedure (STS-7)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Type "Veteran" in the "What's my
situation?" search input.

An autocomplete dropdown is displayed below
the "What's my Situation?" search input. All
terms except those containing the word 'Veteran'
are filtered from the autocomplete dropdown.

3 Click the first term or hit the enter key. A tag with the first term from the list is added to
the left of the "What's my situation?" search
input.

4 Click the 'close' icon in the tag created
in Step 3.

The tag is removed.

5 Enter "Xyz" in the needs box A dropdown displaying no matching OEP terms
is shown with a message telling the user to revise
their search. Suggested terms are shown.

6 Enter 123 A dropdown displaying no matching OEP terms
is shown with a message telling the user to revise
their search. Suggested terms are shown.

7 Enter \enter (blank input) An autocomplete dropdown displaying all OEP
terms is displayed.

8 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !32 69

!

Figure 4.8 OEP Terms Dropdown

!
! of !33 69

!

Select Predefined Situation (UC7)
This Use Case provides an 'autocomplete' input for users to select one or more predefined 'situations' from a list
of OEP terms [5].

Automated Testing

The automated tests for this Use Case are covered by STS-1.

Manual Testing

Table 4.16 Test Case Description STS-8

Test Case ID: STS-8

Test Name: Select Predefined Situation (Manual)

Description: Test 'situation' text input autocomplete and tagging features.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

!
! of !34 69

!

Table 4.17 Manual Test Procedure STS-8

Manual Test Procedure (STS-8)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Type "Veteran" in the "What's my
situation?" search input.

An autocomplete dropdown is displayed below
the "What's my Situation?" search input. All
terms except those containing the word 'Veteran'
are filtered from the autocomplete dropdown.

3 Click the first term or hit the enter key. A tag with the first term from the list is added to
the left of the "What's my situation?" search
input.

4 Click the 'close' icon in the tag created
in Step 3.

The tag is removed.

5 Enter "Xyz" in the needs box A dropdown displaying no matching OEP terms
is shown with a message telling the user to revise
their search. Suggested terms are shown.

6 Enter 123 A dropdown displaying no matching OEP terms
is shown with a message telling the user to revise
their search. Suggested terms are shown.

7 Enter \enter (blank input) An autocomplete dropdown displaying all OEP
terms is displayed.

8 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !35 69

!

Remove from Screen (UC15)
Users can choose to ignore results that don't interest them.

Table 4.18 Test Case Description STS-9

Table 4.19 Automated Test Description STS-9

Test Case ID: STS-9

Test Name: Remove from Screen (Automated)

Description: Results should be removed from the list of available results, and should be ignored on
future searches.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Coverage, White Box

Automated Test Description (STS-9)

Test Description Expected Result

ResultsController (Client Unit Tests)

1 It should remove the result at the given index. The search service's 'remove' method is called.

2 It should not remove a result when the given
index is out of bounds.

The search service's 'remove' method is not called.

3 It should not remove a result when no results
are available.

The search service's 'remove' method is not called.

SearchService (Client Unit Tests)

4 It should mark a given result as ignored. The given result should be marked as ignored when
the service updates subscribers.

!
! of !36 69

!

Manual Testing

Table 4.20 Test Case Description STS-10

Table 4.21 Manual Test Procedure STS-10

Test Case ID: STS-10

Test Name: Remove from Screen (Manual)

Description: Test removing a search result.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

Manual Test Procedure (STS-10)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Click the 'thumbs down' button on the
first result in the results pane.

The result should be removed from the results
pane and the map, and the result count in the
results pane should be decremented.

3 Click the 'thumbs down' button on the
new first result in the results pane.

The result should be removed from the results
pane and the map, and the result count in the
results pane should be decremented.

4 Click the 'thumbs down' button on the
remaining results in the results pane.

All results should be removed from the results
pane and the map, and the result count in the
results pane should be zero.

5 Pan the map slightly to cause a new
search.

None of the ignored results are displayed.

6 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !37 69

!

Figure 4.9 Before Removing Result

Figure 4.10 After Removing Result

!
! of !38 69

!

Save Search Query (UC17)

Search queries are saved to the application's database for use by the application's neural network to deliver
relevant results to users.

Automated Testing

Table 4.22 Test Case Description STS-11

Table 4.23 Automated Test Description STS-11

Test Case ID: STS-11

Test Name: Save Search Query (Automated)

Description: Search queries should be saved to the application database.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Coverage, White Box

Automated Test Description (STS-11)

Test Description Expected Result

SearchController (Server Unit Tests)

1 It should attempt to save query with results (all
results found in DB path).

Search results are associated with the search query,
and the method to save the query to the database is
called.

2 It should attempt to save query with results (no
results found in DB path)

Search results are associated with the search query,
and the method to save the query to the database is
called.

!
! of !39 69

!

Manual Testing

Table 4.24 Test Case Description STS-12

Table 4.25 Manual Test Procedure STS-12

Test Case ID: STS-12

Test Name: Save Search Query (Manual)

Description: Test that search queries are saved to the application database.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Conversion, Interface, Black Box

Manual Test Procedure (STS-12)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly. The initial
search query is saved in the application's
database with the bounds of the initial map
position.

2 Enter a search term in the "What's my
situation?" input.

A search query with the entered term, and the
bounds of the initial map position, is saved in the
application's database.

3 Enter a search term in the "What do I
need?" input.

A search query with both entered terms, and the
bounds of the initial map position, is saved in the
application's database.

4 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !40 69

!

4.2 Map
The Map feature provides the main method for interacting with the application. As noted in the SRS [1], many of
Benefisher's target users have limited access to transportation, so the location of services is very important to
them. The Map feature is loosely coupled with the rest of the system, and provides a single unique testing
challenge:

• The client-side MapController (map-controller.js) interacts with the user's browser's geolocation API to retrieve
information about the user's physical location.This is achieved by creating a service that handles all interactions
with the API, and then injecting a mock of the service into the controller during automated client unit testing.

Search for Service (UC1)
This Use Case is described in detail in the Search feature subsection (4.1).

Automated Testing

Table 4.26 Test Case Description STS-13

Table 4.27 Automated Test Description STS-13

Test Case ID: STS-13

Test Name: Subscribe to Search Service (Automated)

Description: Ensure that the map controller subscribes to the search service. The remaining functionality
for this Use Case is covered by STS-1.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Coverage, Regression, White Box

Automated Test Description (STS-13)

Test Description Expected Result

MapController (Client Unit Tests)

1 It should subscribe to the search
service.

Map is updated with results anytime a search is
specified.

!
! of !41 69

!

Manual Testing

See test case STS-2 for manual testing of this Use Case, along with the description, in the Search section (4.1).

Browse Map (UC5)
This Use Case is described in detail in the Search section (4.1).

Automated Testing

Table 4.30 Test Case Description STS-15

Test Case ID: STS-15

Test Name: Update Map on Move (Automated)

Description: Ensure that the map controller passes unit testing and performs basic operations as
expected.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Coverage, Regression, White Box

!
! of !42 69

!

Table 4.31 Automated Test Description STS-15

Automated Test Description (STS-15)

Test Description Expected Result

MapController (Client Unit Tests)

1 It should create map defaults. The generated map's configuration matches the
configuration that we have sent it.

2 It should create map center. The generated map's center matches the one that
we've sent it.

3 It should initialize with no markers. The map has 0 markers initially.

4 It should add markers on update. Upon an update, the map gains n markers, where n
is equal to the number of results sent in the update.

5 It should not add markers that have an ignored
property of true.

If one of the markers is hidden (meaning that the
user has hidden it), the marker is no longer be on the
map

6 It should focus on the marker that was selected
by the user.

When a marker is clicked, the marker gain focus
from the application

7 It should call the search service's selected
function when a marker has been clicked.

When a marker is clicked, the map triggers the
selected() method in the search service.

8 It should subscribe to search service. The map is subscribed to updated from the search
service.

9 It should call search on map loaded event with
correct parameters.

When the map is loaded, it is populated with results
as per its request.

10 It should call search on map drag end event
with correct parameters.

When the map is dragged, the results change
accordingly.

11 It should call search on map zoom end event
with correct parameters.

When the map is zoomed, the results change
accordingly.

!
! of !43 69

!

Manual Testing

Table 4.32 Test Case Description STS-16

Test Case ID: STS-16

Test Name: Update Map on Move (Manual)

Description: Ensure that panning and/or zooming the map updates the map with relevant results.

Prerequisites: Testing for UC18 should pass.

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

!
! of !44 69

!

Table 4.33 Manual Test Procedure STS-16

Manual Test Procedure (STS-16)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Drag the map to the east/west and then
release the mouse.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

3 Drag the map north/south and then
release the mouse.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

4 Zoom the map out using the mouse
scroll wheel or trackpad scroll gesture
and then release.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

5 Zoom the map out by clicking the '-'
button on the map.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

6 Zoom the map in using the mouse scroll
whell or trackpad scroll gesture and
then release the mouse.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

7 Zoom the map in by clicking the '+'
button on the map.

Markers that are in the current view should
appear, while markers outside the view should
disappear.

8 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !45 69

!

!

Figure 4.11 After opening the application

!

Figure 4.12 After Dragging map

!
! of !46 69

!

!

Figure 4.13 After zooming in

!

Figure 4.14 After Zooming Out

!
! of !47 69

!

Interact with Results (UC9)
This Use Case is covered by tests STS-16, STS-17, and STS-20 thru STS-32.

Remove from Screen (UC15)
This Use Case is described in detail in the Search subsection (4.1).

Automated Testing

Table 4.34 Test Case Description STS-17

Table 4.35 Automated Test Procedure STS-17

Test Case ID: STS-17

Test Name: Remove Marker from Map (Automated)

Description: Ensures that the map controller does not add markers that are marked as ignored by the
user.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Regression, Coverage, Black Box

Automated Test Description (STS-17)

Test Description Expected Result

MapController (Client Unit Tests)

1 It should not add markers that have an
ignored property of true.

Map markers should not be added to the map if
its result was downvoted.

!
! of !48 69

!

Manual Testing

Table 4.36 Test Case Description STS-18

Table 4.37 Manual Test Procedure STS-18

Test Case ID: STS-18

Test Name: Remove Marker from Map (Manual)

Description: Ensures that the map controller receives the event that a user chose to ignore a result and
hides the corresponding marker.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Regression, Black Box

Manual Test Procedure (STS-18)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Click a marker on the map. Its corresponding result should become selected
in the results section. The result should also be
brought on screen if it was previously off screen.

3 Click the thumbs down button within
the marker's result section.

The marker related to the result should be
removed from the map. The numbers of each
marker should also be updated.

4 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !49 69

!

!

Figure 4.14 After Clicking a marker on the map

!

Figure 4.15 After Removing the Result

!
! of !50 69

!

Click Result on Map (UC16)
When map results are clicked, the corresponding result should be highlighted in the results pane.

Automated Testing

Table 4.38 Test Case Description STS-19

Table 4.39 Automated Test Description STS-19

Manual Testing

Table 4.40 Test Case Description (STS-20)

Test Case ID: STS-19

Test Name: Click Result on Map (Automated)

Description: Ensures that the map controller is notified when a marker is clicked.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Coverage, White Box

Automated Test Description (STS-19)

Test Description Expected Result

ResultsController (Client Unit Tests)

1 It should call the search service's
selected function when a marker has

been clicked

The search service's "selected" function should
be called.

Test Case ID: STS-20

Test Name: Click Result on Map (Manual)

Description: Ensures that the map controller is notified when a marker is clicked.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

!
! of !51 69

!

Table 4.41 Manual Test Procedure STS-20

"

Figure 4.16 After Clicking a Result

Manual Test Procedure (STS-20)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Click a marker on the map. The marker's popup should open, also the
marker's result should be selected in the results
section.

3 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !52 69

!

4.3 Results

Search for Service (UC1)
See test cases STS-1 and STS-2 for this Use Case, along with the description, in the Search section (4.1).

Browse Map (UC5)
See the description and test cases for this Use Case in the Map section (4.2).

Save interaction data (UC8)
The interactions described in UC10 - UC14 are saved to the application database for use in the application's
neural network to improve the relevance of search results. This Use Case is covered by Use Cases UC10 - UC14
in this section.

Interact with Results (UC9)
This Use Case allows a number of interactions with search results, described in detail in UC10 - UC14. It is
covered by the test cases for those Use Cases.

Expand Results (UC10)
To avoid overwhelming the user with information, results are initially displayed in a compact state, and the user can
choose to expand results they are interested in.

Automated Testing

Table 4.42 Test Case Description STS-21

Test Case ID: STS-21

Test Name: Expand Results (Automated)

Description: Ensures that a result's "expanded" property is set to true when selected to expand. Also
make's sure that only one result is expanded at a time.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Coverage, White Box

!
! of !53 69

!

Table 4.43 Automated Test Description STS-21

Automated Test Description (STS-21)

Test Description Expected Result

ResultsController (Client Unit Tests)

1 It should change result's expand
property to true when expandResult

function is called.

The result's expand property should be set to
true, which lets the jade file know to expand the

result.

2 It should collapse a result when a
different result is expanded

A result that is already expanded should be
collapsed when a different result is expanded.

!
! of !54 69

!

Manual Testing

Table 4.44 Test Case Description STS-22

Table 4.45 Manual Test Procedure STS-22

Test Case ID: STS-22

Test Name: Expand Result (Manual)

Description: Ensures that a result expands to show information about it when the '+' button is clicked,
and that it collapses to hide the information when the '-' button is clicked.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

Manual Test Procedure (STS-22)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Click the '+' button in the top right
corner of a result.

The result should expand to show the thumbs
up/down buttons, its address, and hours of
operation. The '+' should change to a '-'.

3 Click the '-' button in the top right
corner of a result.

The result should collapse to hide the thumbs
up/down buttons, its address, and its hours of

operation. The '-' should change to a '+'.

4 Click the '+' button in the top right
corner of a result. Then click the '+'
button of a different result.

The first result should expand when its '+' button
is clicked. The first result should then collapse
when the second result's '+' button is clicked.
The second result should then be the only one

expanded.

5 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !55 69

!

Get Directions (UC11)
This Use Case provides users with an easy way to get directions to a particular service. This interaction is saved to
the application database for future use by the neural network.

Manual Testing

Table 4.46 Test Case Description STS-23

Table 4.47 Manual Test Procedure STS-23

Test Case ID: STS-23

Test Name: Get Directions (Manual)	

Description: Ensures that clicking the directions button on a result redirects to Google maps.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

Manual Test Procedure (STS-23)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly.

2 Click on the road map icon of one of the
results.

Redirects user to Google Maps for directions.
User's current location is set as starting location,
and result address is set as destination location.
The interaction is saved in database.

3 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Android Browser, iPhone Safari

!
! of !56 69

!

!

Figure 4.17 Navigate to Service Location Link

!
! of !57 69

!

Call Service (UC12)
This Use Case allows mobile users to easily call a particular service. This interaction is saved to the application
database for future use by the neural network.

Manual Testing

Table 4.48 Test Case Description STS-24

Table 4.49 Manual Test Procedure STS-24

Test Case ID: STS-24

Test Name: Call Service (Manual)

Description: Ensures that clicking the phone button from a mobile device attempts a call to the service.

Prerequisites: Access application from a mobile device

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

Manual Test Procedure (STS-24)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly.

2 Click on the cellphone icon of one of the
results.

Mobile device should attempt to call the number
of the service, and the interaction is saved in
database.

3 Repeat in each of the following
browsers:
Mobile: Andriod Browser, iPhone Safari

!
! of !58 69

!

!

Figure 4.18 Call Service Link

!
! of !59 69

!

Navigate to Site (UC13)
The user can visit a particular service's website. This interaction is saved to the application database for future use
by the neural network.

Manual Testing

Table 4.50 Test Case Description STS-25

Table 4.51 Manual Test Procedure STS-25

Test Case ID: STS-25

Test Name: Navigation to site (Manual)

Description: Ensures that clicking a result's web address redirects the user to the service's website.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Coverage, White Box

Manual Test Procedure (STS-25)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly.

2 Click on the link icon of one of the
results.

Browser should redirect to the service’s website,
and the interaction should be successfully saved
in database.

3 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !60 69

!

"

Figure 4.19 Navigation to Site Link

!
! of !61 69

!

Email Service (UC14)
This use case opens the user's default email application, and begins composition of an email to a particular
service. This interaction is saved to the application database for future use by the neural network.

Manual Testing

Table 4.52 Test Case Description STS-26

Table 4.53 Manual Test Procedure STS-26

Test Case ID: STS-26

Test Name: Email Service (Manual)

Description: Ensures that a clicking a result's email address allows the user to send an email to that
address.

Prerequisites: N/A

Test Environment: Acceptance Server

Test Strategy Interface, Black Box

Manual Test Procedure (STS-26)

Step Description Expected Results

1 Open the Benefisher Application in a
browser.

The application is displayed correctly

2 Click on the email icon of one of the
results

Default email client opens, and creates a new
email with the service’s email address set in the
“to” field. The interaction is saved in database

3 Repeat in each of the following
browsers:
Desktop: Google Chrome, Mozilla
Firefox, Internet Explorer
Mobile: Andriod Browser, iPhone Safari

!
! of !62 69

!

!

Figure 4.20 Email Link

!
! of !63 69

!

Remove from Screen (UC15)
See the description and test cases for this Use Case in the Search (4.1) and Map (4.2) sections.

Click Result on Map (UC16)
See the description and test cases for this Use Case in the Map section (4.2).

!
! of !64 69

!

5. REQUIREMENTS TRACEABILITY
Use Case System Test ID Design Components

Search for Services
(UC-1)

STS-1 - Search for Service (Automated)
STS-2 - Search for Service (Manual)
STS-19 - Subscribe to Search Service (Automated)
STS-20 - Recieve Search Data (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
notifications.jade
app.js (client)
services.js
search-controller.js
search-service.js
notification-service.js

Search by Need
(UC-2)

STS-3 - Search by Need (Automated)
STS-4 - Search by Need (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
app.js (client)
services.js
search-controller.js
search-service.js

Search by Situation
(UC-3)

STS-5 - Search by Situation (Automated)
STS-6 - Search by Situation (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
app.js (client)
services.js
search-controller.js
search-service.js

Search by Need &
Situation (UC-4)

STS-7 - Search by Need & Situation (Automated)
STS-8 - Search by Need & Situation (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
app.js (client)
services.js
search-controller.js
search-service.js

!
! of !65 69

!

Browse Map (UC-5) STS-9 - Browse Map (Automated)
STS-10 - Browse Map (Manual)
STS-21 - Update Map on Move (Automated)
STS-22 - Update Map on Move (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
map.jade
app.js (client)
search-service.js
map-controller.js

Select Pre-Defined
Need (UC-6)

STS-11 - Select Pre-Defined Need (Automated)
STS-12 - Select Pre-Defined Need (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
app.js (client)
services.js
search-controller.js
search-service.js

Select Pre-Defined
Situation (UC-7)

STS-13 - Select Pre-Defined Situation (Automated)
STS-14 - Select Pre-Defined Situation (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
search.jade
app.js (client)
services.js
search-controller.js
search-service.js

Save Interaction Data
(UC-8)

STS-27 - Expand Results (Automated)
STS-28 - Expand Results (Manual)
STS-29 - Get Directions (Manual)
STS-30 - Call Service (Manual)
STS-31 - Navigate to Site (Manual)
STS-32 - Email Serivce (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js
interactions.js

Use Case System Test ID Design Components

!
! of !66 69

!

Interact with Results
(UC-9)

STS-15 - Remove From Screen (Automated)
STS-16 - Remove From Screen (Manual)
STS-19 - Subscribe to Search Service (Automated)
STS-20 - Recieve Search Data (Manual)
STS-21 - Updated Map on Move (Automated)
STS-22 - Update Map on Move (Manual)
STS-23 - Remove Marker from Map (Automated)
STS-24 - Remove Marker from Map (Manual)
STS-25 - Click Result on Map (Automated)
STS-26 - Click Result on Map (Manual)
STS-27 - Expand Results (Automated)
STS-28 - Expand Results (Manual)
STS-29 - Get Directions (Manual)
STS-30 - Call Service (Manual)
STS-31 - Navigate to Site (Manual)
STS-32 - Email Service (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
map.jade
app.js (client)
services.js
search-service.js
map-controller.js
result-controller.js
interactions.js

Expand Results
(UC-10)

STS-27- Expand Results (Automated)
STS-28 - Expand Results (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js

Get Directions
(UC-11)

STS-29 - Get Directions (Manual) app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js

Call Service (UC-12) STS-30 - Call Service (Manual) app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js

Use Case System Test ID Design Components

!
! of !67 69

!

Table 5.1 Use Case-Test Case-Component Matrix

Navigate to Site
(UC-13)

STS-31 - Navigate to Site (Manual) app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js

E-mail Service
(UC-14)

STS-32 - Email Serivce (Manual) app.js (server)
index.js
layout.jade
index.jade
scripts.jade
results.jade
app.js (client)
services.js
search-service.js
result-controller.js

Remove from Screen
(UC-15)

STS-15 - Remove From Screen (Automated)
STS-16 - Remove From Screen (Manual)
STS-23 - Remove Marker From Map (Automated)
STS-24 - Remove Marker From Map (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
app.js (client)
services.js
search-service.js
result-controller.js

Click Result on Map
(UC-16)

STS-25 - Click Result on Map (Automated)
STS-26 - Click Result on Map (Manual)

app.js (server)
index.js
layout.jade
index.jade
scripts.jade
map.jade
app.js (client)
services.js
search-service.js
map-controller.js

Save Search Query
(UC-17)

STS-17 - Save Search Query (Automated)
STS-18 - Save Search Query (Manual)

Use Case System Test ID Design Components

!
! of !68 69

!

9. APPROVALS
 
The signatures here indicate that the relevant stakeholders understand the contents of this document, and
approve of the outlined software design.

Table 6.1 Project Team, Advisor, and Sponsor Signatures

Name Signature Date

Adrian Chambers

Anthony Cristiano

Daniel Green

James Doan

Jesse Rosato

Sponsor Representative

Meiliu Lu (Advisor)

!
! of !69 69

