
BENEFISHER
Software Design Specification

Version 2.0
10/14/2014

 

TEAM WAKATI

TABLE OF CONTENTS

1. INTRODUCTION 3

1.1 PURPOSE	 4

1.2 SCOPE	 4

1.3 DEFINITIONS	 5

1.4 REFERENCES	 7

1.5 OVERVIEW OF CONTENT OF DOCUMENT	 8

2. ARCHITECTURAL DESIGN 9

2.1 HARDWARE ARCHITECTURE	 9

2.2 SOFTWARE DESIGN ARCHITECTURE	 10

3. INTERFACE DESIGN 15

4. DATA DESIGN 19

4.1 ENTITY RELATIONSHIP DIAGRAM	 19

4.2 CREATING THE DATABASE	 20

5. COMPONENT DESIGN SPECIFICATION 22

5.1 SEQUENCE DIAGRAMS	 23

5.2 WEBPAGE AND FUNCTION DESIGN SPECIFICATIONS	 39

6. PERFORMANCE ANALYSIS 57

6.1 REQUIRED QUALITY ATTRIBUTES.	 57

6.2 OPTIONAL QUALITY ATTRIBUTES	 58

7. RESOURCE ESTIMATES 59

7.1 MINIMUM SOFTWARE REQUIREMENTS	 59

7.2 MINIMUM HARDWARE REQUIREMENTS	 59

7.3 RECOMMENDED HARDWARE REQUIREMENTS	 60

8. SOFTWARE REQUIREMENTS TRACEABILITY 61

9. APPROVALS 62

APPENDIX A 63

APPENDIX B 64

TEAM WAKATI 
�

1. INTRODUCTION
This document is the Software Design Specification for the Benefisher project, by Team Wakati, sponsored by
Code for Sacramento.

Project Team

Team Wakati is comprised of undergraduate students majoring in Computer Science at California State University,
Sacramento. The team members are enrolled in a two-semester senior project course required of all
undergraduate majors. Successful delivery of the desired software product will fulfill the senior project requirement
for the student team members.

Table 1.1 Team Wakati Members

Project Sponsor

Code for Sacramento is a Code for America Brigade, whose mission is "to help government work for the people,
by the people" [1]. Code4Sac has aligned the goal of improving access to public services data with their central
missions of “connecting citizens and governments to design better services” and “open[ing] civic data” [1]. To that
end, the sponsor has proposed the project under discussion.

Table 1.2 Code for America Representatives

Name Email Phone

Adrian Chambers adr510909@gmail.com (707) 430-3775

Anthony Cristiano cristiano@csus.edu (925) 321-7648

James Doan jhdoan@gmail.com (949) 690-4212

Daniel Green djgreensolving@gmail.com (209) 402-3658

Jesse Rosato jesse.rosato@gmail.com (916) 541-5386

Name Role Email

Brandon Pugh Brigade Captain bpugh143@gmail.com

Ash Roughani Community Organizer ash@publicinnovation.org

!  
! of !3 67

TEAM WAKATI 
�

1.1 Purpose

This Software Design Specification (SDS) exists to establish a baseline for the technical design of Benefisher. This
document is primarily a blueprint for Team Wakati to use in implementing the project, but should also provide the
project sponsor with insight into Benefisher’s technical design for use in later maintenance of the project.

 
1.2 Scope

This document details the design of Benefisher from multiple perspectives: architectural design, interface design,
data design, and component design. This document also includes a performance analysis, resource estimates,
and a traceability matrix that ties the contents of this document to the project requirements established in the
Software Requirements Specification (SRS) [2].

This is the baseline design specification for Benefisher, and the design described here may change during
implementation and testing. Changes should follow the baseline change process described in the Project Charter
[3].  

!  
! of !4 67

TEAM WAKATI 
�

1.3 Definitions

Term Definition

Angular An open-source web application framework that assists with creating single-page
applications, which consists of one HTML page and CSS and JavaScript on the
client side [4].

Application
Programming Interface
(API)

Implemented declarations of how a software component will interact with other
software components. A common example of an API is a web service that
provides data via a collection of resource addresses.

Client-side The portion of code in a client-server application that is executed on the client
machine.

Continuous Delivery Continuous delivery (also called continuous integration) is a modern software
deployment strategy that allows the source code for a system to be updated
causing system downtime.

Express A Node.js web application framework, designed for building single-page, multi-
page and hybrid web applications.

Git A popular version control system.

GitHub A web based hosting service for Git repositories

Hyper Text Transfer
Protocol (HTTP)

HTTP is one of the foundational protocols of the web, and is generally used to
retrieve hypertext from a website (e.g. http://facebook.com). HTTP provides several
'verbs' for making requests, including 'GET' and 'POST', that indicate the nature of
the request.

Jade A templating language and engine focused on enabling quick HTML coding for
Node applications [5].

JavaScript A client-side language for implementing dynamic interactions on a webpage.

JetBrains WebStorm An Integrated Development Environment (IDE) designed for writing web software
languages.

MySQL An open-source relational database management system.

Neural Network A computational model and machine learning algorithm with multiple connected
input and output units. Each connection is weighted in importance and the weights
are adjusted by the algorithm to correctly predict future inputs to outputs [10].

Node An open-source, cross-platform runtime environment for server-side and
networking applications written in JavaScript [6].

Open Eligibility Project
(OEP)

An open-source taxonomy to categorize human services and human situations [7].

Representational State
Transfer (REST)

A network-based architectural style that “define[s] a uniform connector
interface” [8]. In modern practice, REST principles are commonly used to guide
design decisions when building APIs for web services.

Term

!  
! of !5 67

TEAM WAKATI 
�

Table 1.3 Definitions

RESTful Jargon to describe software implementations that closely adhere to REST
principles.

Server-side The portion of code in a client-server application that is executed on the server
hardware.

SQL Injection A code injection technique used to attack data-driven applications in which
malicious SQL statements are inserted into an entry field for execution.

DefinitionTerm

!  
! of !6 67

TEAM WAKATI 
�

1.4 References 

1. "What we do", [online], Code for Sacramento, http://code4sac.org/what-we-do/, [Oct. 24, 2014]  

2. Software Requirements Specification. Chambers, A., Cristiano, A., Doan, J., Green, D., and Rosato, J.,
Team Wakati, Sacramento, CA, May 1, 2014. 

3. Team Wakati Project Charter. Chambers, A., Cristiano, A., Doan, J., Green, D., and Rosato, J., Team
Wakati, Sacramento, CA, Mar. 13, 2014. 

4. “What Is Angular?”, [online], AngularJS, https://docs.angularjs.org/guide/introduction, [Sept. 23, 2014]  

5. “Language Reference”, [online], http://jade-lang.com/reference/, [Sept. 24, 2014] 

6. “About Node.js”, [online], http://nodejs.org/about/, [Sept. 23, 2014] 

7. “Open Eligibility Project”, [online], http://openeligibility.org/, [Apr. 14, 2014] 

8. Fielding, R., “Architectural Styles and the Design of Network-based Software Architectures”, Ph.D., ICS,
Univ. California, Irvine, 2000.  

9. “JavaScript Style Guide”, [online], jQuery Foundation, https://contribute.jquery.org/style-guide/js/, [Ap. 14,
2014]. 

10. Han, Jiawei, and Micheline Kamber. Data Mining: Concepts and Techniques. Haryana, India ; Burlington,
MA: Elsevier, 2012. Print. 

11. Segaran, Toby, "Learning from Clicks" in Programming Collective Intelligence, 1st ed. Sebastopol, CA.
August, 2007. Print. [Oct. 15, 2014]

!  
! of !7 67

http://code4sac.org/what-we-do/

TEAM WAKATI 
�

1.5 Overview of Content of Document

Architectural Design

Architectural design describes the hardware, software, and their interplay within the Benefisher application. The
architectural design of Benefisher will include the communication between the interface, server, and data stores.

Interface Design

Interface design establishes the look, feel, and interactivity of the software from a user’s perspective. This includes
a mapping of Benefisher’s features to the functionality they provide to the user, and images from the application
depicting those features.

Data Design

The data design represents how Benefisher will store and obtain the data it needs to work. Included is a high level
model of where the data will be stored, as well as the SQL statements needed to create the database.

Component Design Specifications

This section details the design of the software and maps the features to their components.

Performance Analysis

This section specifies the implementation of quality attributes detailed in the SRS, as well as any design constraints
that have come about as a result of the design and implementation process.

Resource Estimates

This section describes the minimum and recommended system requirements to successfully run Benefisher.

Software Requirements Traceability Matrix

The matrix relates the design components to their associated requirements by listing the subsection numbers in
this document and the associated subsection numbers in the SRS.

Approvals

The signatures here indicate that the relevant stakeholders understand the contents of this document, and
approve of the outlined software design.

!  
! of !8 67

TEAM WAKATI 
�

2. ARCHITECTURAL DESIGN
Architectural design describes the hardware, software, and their interplay within the Benefisher application. The
architectural design of Benefisher will include communication between the user interface, server, and data stores.

2.1 Hardware architecture
Clients will be able to connect to the Benefisher application using a desktop computer, laptop computer, mobile
phone, or tablet. Clients must be connected to the Internet on the device that is being used in order to use the
Benefisher application. Benefisher will use the client’s location to pull information on the social service providers
near them from the Code for Sacramento data source. Information to make the search stronger will be pulled from
the Benefisher Statistics Database and this will be combined with the information pulled from the Code for
Sacramento database.

Figure 2.1 Architecture Design

!  
! of !9 67

TEAM WAKATI 
�

2.2 Software Design Architecture
The software design architecture establishes the high-level software structure of the Benefisher application. This
section describes the various web frameworks, design patterns, and components used in the design of the
Benefisher application. Also included is a brief discussion on the rationale for choosing the selected elements that
comprise the software architecture.

Figure 2.2 Software Development Stack

!  
! of !10 67

TEAM WAKATI 
�

Figure 2.3 Full-Stack Data Flow Diagram

!  
! of !11 67

TEAM WAKATI 
�

Presentation Layer

In the presentation layer, the client-side of the Benefisher application employs the Model-View-Controller
architectural pattern for implementing the user interface. Angular JS was chosen as the framework to accomplish
this because of its abilities to be highly testable, utilize data binding, and attach directives to webpages using
attributes, tags and expressions. It provides all the functionality needed to handle user input in the browser,
manipulate data and control how elements are displayed in the browser view to fulfill the application's client-side
requirements.

Figure 2.4 Client-Side Architechture

!  
! of !12 67

TEAM WAKATI 
�

“Business” Logic Layer

The business logic layer components that reside on the server-side of the Benefisher application are developed
using the Node.js framework. The Node.js framework was chosen to accomplish this because of its high
scalability, event-driven architecture, ease of implementation, and because it allows the development team to code
the client- and server-sides of the application in the same language (JavaScript). The server-side components
utilize a RESTful approach to provide data resources to client-side components. The advantages of using RESTful
APIs are their loose coupling and future extensibility.

 

Figure 2.5 Server-Side MVC Architechture

!  
! of !13 67

TEAM WAKATI 
�

Data Management Layer

The data management layer will utilize a MySQL database to store the data for the Benefisher application. The
database will communicate with the server-side components of the business logic layer and will be use to store
data of available services and search analytics and statistics.

Figure 2.6 Data-Layer Component Architecture  

!  
! of !14 67

TEAM WAKATI 
�

3. INTERFACE DESIGN
Interface design establishes the look, feel, and interactivity of the software from a user’s perspective. This includes
a mapping of Benefisher’s features to the functionality they provide to the user, and images from the application
depicting those features.

Figure 3.1 User Interface Data-Flow Diagram

!  
! of !15 67

TEAM WAKATI 
�

Map

Entering text into the search component causes relevant markers to appear on the map. Moving the map causes
the markers on the map to be updated with markers relevant to the new bounds of the map viewport. Clicking on
markers within the map causes the relevant result in the results component to be highlighted.

!

Figure 3.2 Map Component Interactivity

!  
! of !16 67

TEAM WAKATI 
�

Search

The search component accepts query parameters, saves queries to the statistics database, and retrieves search
results from the server. Typing text into the inputs causes a dropdown list of OEP [7] terms to be displayed that the
user can select. Selecting a term, or ‘panning’ the map, causes the component to make an HTTP request to the
server to retrieve search results. The search results are sorted for relevance by a neural network that intermediates
between the server and the data source. The results are then displayed in the map and results components.

!

Figure 3.3 Search Component Interactivity

!  
! of !17 67

TEAM WAKATI 
�

Results

The results component displays more detailed information about the locations displayed on the map. When a user
interacts with a result, by emailing the service described by the result, visiting the service’s website, hiding a result,
etc., that interaction is saved to the statistics database, and the display is updated if necessary.

!

Figure 3.4 Results Component Interactivity

!  
! of !18 67

TEAM WAKATI 
�

4. DATA DESIGN
The data design represents how Benefisher will store and obtain the data it needs to work. Included is a high level
model of how the data will be stored, as well as the SQL statements needed to create the database.

4.1 Entity Relationship Diagram
The following is a simplified version of the application's Entity Relationship Diagram. See Appendix A for a more
complete version.

Figure 4.1 Simplified Entity Relationship Diagram

!  
! of !19 67

TEAM WAKATI 
�

4.2 Creating the Database
This section contains the statements for creating the database.

SQL Table: Search Query:
CREATE TABLE IF NOT EXISTS `Queries` (

`id` INTEGER NOT NULL auto_increment ,

`bounds` VARCHAR(255),

`terms` VARCHAR(255),

`userPostalCode` VARCHAR(255),

`createdAt` DATETIME NOT NULL,

`updatedAt` DATETIME NOT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB;

SQL Table: Search Result:
CREATE TABLE IF NOT EXISTS `Results` (

`id` INTEGER NOT NULL auto_increment ,

`name` VARCHAR(255),

`externalId` VARCHAR(255),

`lat` DECIMAL(18,12),

`lng` DECIMAL(18,12),

`description` TEXT,

`address` VARCHAR(255),

`hours` VARCHAR(255),

`phone` VARCHAR(255),

`rawPhone` VARCHAR(255),

`email` VARCHAR(255),

`url` VARCHAR(255),

`createdAt` DATETIME NOT NULL,

`updatedAt` DATETIME NOT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB;

!  
! of !20 67

TEAM WAKATI 
�

SQL Table: Search Result Interaction:
CREATE TABLE IF NOT EXISTS `Interactions` (

`id` INTEGER NOT NULL auto_increment ,

`target` VARCHAR(255), `createdAt` DATETIME NOT NULL,

`updatedAt` DATETIME NOT NULL,

`ResultId` INTEGER,

PRIMARY KEY (`id`),

FOREIGN KEY (`ResultId`)

REFERENCES `Results` (`id`) ON DELETE SET NULL ON UPDATE CASCADE

) ENGINE=InnoDB;

SQL Table: Query-Result Relationship:
CREATE TABLE IF NOT EXISTS `QueriesResults` (

`createdAt` DATETIME NOT NULL,

`updatedAt` DATETIME NOT NULL,

`ResultId` INTEGER , `QueryId` INTEGER ,

PRIMARY KEY (`ResultId`, `QueryId`),

FOREIGN KEY (`ResultId`)

REFERENCES `Results` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

FOREIGN KEY (`QueryId`)

REFERENCES `Queries` (`id`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB;  

!  
! of !21 67

TEAM WAKATI 
�

5. COMPONENT DESIGN SPECIFICATION
This section details the design of the software and maps the features to their components. In implementing these
components, Team Wakati will be adhering to the jQuery Foundation’s coding style [9], as described in the
Software Requirements Specification (SRS) document [2].

Table 5.1 Feature-Component Matrix

Feature View Client Server Table/Relations

Map layout.jade
index.jade
scripts.jade
map.jade
notification.jade

app.js
services.js
map-controller.js
search-service.js
notification-service.js

app.js
index.js
search.js
neural-network.js

Results
Queries

Search layout.jade
index.jade
scripts.jade
search.jade

app.js
services.js
search-controller.js
search-service.js

app.js
index.js
search.js
neural-network.js

Results
Queries

Results layout.jade
index.jade
scripts.jade
results.jade
notifcation.jade

app.js
services.js
results-controller.js
search-service.js
interaction-service.js
notification-service.js

app.js
index.js
interactions.js

Interactions

Notification layout.jade
index.jade
scripts.jade
notifcation.jade

app.js
notification-service.js

app.js
index.js

!  
! of !22 67

TEAM WAKATI 
�

5.1 Sequence Diagrams
These sequence diagrams are used to illustrate the Use Cases outlined in the SRS[1], and clarify the interaction of
Benefisher’s components. These diagrams depict the ideal, or ‘happy’, flow.

Search for Services (UC1)
Features: Search, Map, Results
This functionality is used by several other Use Cases (UC2 – UC7), and is not duplicated in their sequence
diagrams. The ‘subscribers’ depicted here are the MapController and ResultController. When a search is executed,
both of those components are updated with the results of the search. This Use Case always triggers a save of the
search query (UC17).

Figure 5.1 Search sequence Diagram

!  
! of !23 67

TEAM WAKATI 
�

Search by Need (UC2)
Features: Search
This Use Case is triggered by a user selecting at least one predefined need (UC6), and triggers a search for
services (UC1).

Figure 5.2 Search by Need Sequence Diagram

!  
! of !24 67

TEAM WAKATI 
�

Search by Situation (UC3)
Features: Search
This Use Case is triggered by a user selecting at least one predefined situation (UC7), and triggers a search for
services (UC1).

Figure 5.3 Search by Situation Sequence Diagram

!  
! of !25 67

TEAM WAKATI 
�

Search by Need and Situation (UC4)
Features: Search
This Use Case is triggered when a user selects at least one predefined need and at least one predefined situation
(UC6 and UC7). This Use Case triggers a search for services (UC1).

Figure 5.4 Search by Need and Situation Sequence Diagram

!  
! of !26 67

TEAM WAKATI 
�

Browse Map (UC5)
Features: Map, Search, Results
This Use Case triggers a search for services (UC1).

Figure 5.5 Browse Map Sequence Diagram

!  
! of !27 67

TEAM WAKATI 
�

Select Predefined Need (UC6)
Features: Search
This Use Case triggers a search by need (UC2), or a search by need and situation (UC4) if a predefined situation is
also selected (UC7).

Figure 5.6 Select Predefined Need Sequence Diagram

!  
! of !28 67

TEAM WAKATI 
�

Select Predefined Situation (UC7)
Features: Search
This Use Case triggers a search by situation (UC3), or a search by need and situation (UC4) if a predefined need is
also selected (UC6).

Figure 5.7 Select Predefined Situation Sequence Diagram

!  
! of !29 67

TEAM WAKATI 
�

Save Interaction Data (UC8)
Features: Results
This Use Case saves data on user interactions with results to be used by the neural network algorithm to present
users with the most relevant search results (UC1).

Figure 5.8 Save Interaction Data Sequence Diagram

!  
! of !30 67

TEAM WAKATI 
�

Interact with Results (UC9)
Features: Results, Map
The application provides a number of ways for users to interact with search results. These interactions are
described in more detail in other Use Cases (UC10 - UC15), and all of these interactions trigger a save of the
interaction (UC8). No sequence diagram is provided for this Use Case because its events are specific to the
individual interactions.

Expand Result (UC10)
Features: Results
Results are provided in a compact state by default, to provide users with an overview of their available options.
Results may then be expanded to provide more details about a particular service. This Use Case triggers a save of
the interaction (UC8).

Figure 5.10 Expand Result Sequence Diagram

!  
! of !31 67

TEAM WAKATI 
�

Get Directions (UC11)
Features: Results
This Use Case redirects users to the Google Maps web application using a URL that informs Google Maps to
provide the user with directions to the service from the user's current location. This Use Case triggers a save of the
interaction (UC8).

Figure 5.11 Get Directions Sequence Diagram

!  
! of !32 67

TEAM WAKATI 
�

Call Service (UC12)
Features: Results
This Use Case redirects a mobile user to their device's phone application, and initiates a phione call to the service.
This Use Case triggers a save of the interaction (UC8).

Figure 5.12 Call Service Sequence Diagram

!  
! of !33 67

TEAM WAKATI 
�

Navigate to Site (UC13)
Features: Results
This Use Case redirects users to the service's web site. This Use Case triggers a save of the interaction (UC8).

Figure 5.13 Navigate to Service Sequence Diagram

!  
! of !34 67

TEAM WAKATI 
�

Email Service (UC14)
Features: Results
This Use Case creates a new email using the user's system's default email application, with the service's email
address in the 'to' address of the email. This Use Case triggers a save of the interaction (UC8).

Figure 5.14 Email Service Sequence Diagram

!  
! of !35 67

TEAM WAKATI 
�

Remove from Screen (UC15)
Features: Results, Map, Search
This Use Case allows a user to ignore an unwanted result. This Use Case triggers a save of the interaction (UC8).

Figure 5.15 Remove from Screen Sequence Diagram

!  
! of !36 67

TEAM WAKATI 
�

Click Result on Map (UC16)
Features: Results, Map, Search
This Use Case highlights a result when the user clicks its corresponding map marker.

Figure 5.16 Click Result on Map Sequence Diagram

!  
! of !37 67

TEAM WAKATI 
�

Save Search Query (UC17)
Features: Search
This Use Case saves a search query to be used by the neural network algorithm to present users with the most
relevant search results (UC1). This use case is triggered by a search for services (UC1).

Figure 5.17 Save Search Query Sequence Diagram

!  
! of !38 67

TEAM WAKATI 
�

5.2 Webpage and Function Design Specifications
This subsection describes the preconditions, interface specifications, processing specifications, database
requirements, and postconditions of each component. View components also include a screen print of the
component.

1. File: app.js (client)
Preconditions: This component begins the page initialization sequence depicted in Figure 3.1.

Interface specifications: This component does not provide an interface.

Processing specifications: This component loads the Angular modules and dependencies necessary for the
remaining client-side components.

Screen print: None.

Database requirements: None.

Postconditions: User leaves the webpage.

2. File: app.js (server)
Preconditions: This component bootstraps the application. It is the first component loaded when the server is
started.

Interface specifications: This component does not provide an interface.

Processing specifications: This component loads the critical core modules required to run the Benefisher
application and establish the necessary server routes. These include routes for index and search. The core
modules include: express.js server, path, favicon, logger, cookie-parser and body-parser. It also starts the web
application by creating an Express server instance. This main component also includes functions for handling
server errors, such as 404 and 500 errors.

Screen print: None.

Database requirements: None.

Postconditions: User leaves the webpage. 

!  
! of !39 67

TEAM WAKATI 
�

3. File: error.jade
Preconditions: This component is present after an error has been encountered while executing app.js.

Interface specifications: When a user attempts to access the Benefisher application and a server error is
encountered, this file will be rendered and the user will be presented with an error page (Figure 5.18).

Processing specifications: None.

Screen print: 
 

Figure 5.18 The error.jade View

Database Requirements. None.

Postconditions. User leaves the webpage. 

!  
! of !40 67

TEAM WAKATI 
�

4. File: index.jade
Preconditions: This component is a sub-template of layout.jade, and is rendered by index.js after a user has
accessed the application. See layout.jade (Figure 5.19) for a depiction of template relationships.

Interface specifications: When a user visits the page, this file loads the visible components of the Benefisher
Application, including: map.jade, notification.jade, results.jade, and search.jade. This file also loads the scripts
required for dynamic application interactions (scripts.jade).

Processing specifications: None.

Screen print:

Figure 5.19 The index.jade View

Database Requirements: None.

Postconditions: User leaves the webpage.

!  
! of !41 67

TEAM WAKATI 
�

5. File: index.js
Preconditions: This component is available after the initialization of app.js (server).

Interface specifications: This component is used by app.js to render responses to HTTP GET requests to the
application's base URL (e.g. http://www.benefisher.com).

Processing specifications: This component renders layout.jade and returns the resultant HTML via an HTTP
response.

Screen print: None.

Database Requirements: None.

Postconditions. This component is only active when processing HTTP requests. Once the HTTP response
described above is sent, it is inactive until the next HTTP request.

6. File: interaction-service.js (InteractionService)
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: The interaction service provides a single method that allows other components to save
statistics about result interactions to the statistics database:

StatsService.saveInteraction(interaction)

Processing specifications: The interaction service saves interactions to the statistics database via interactions.js.
The service is used asynchronously and returns a promise that is resolved when the interactions.js returns an
HTTP response.

Screen print: None.

Database Requirements: The interaction service interacts with the result_interaction database table via HTTP
requests to the interactions route (interactions.js).

Postconditions: User leaves the webpage.

!  
! of !42 67

http://www.benefisher.com)

TEAM WAKATI 
�

7. File: interactions.js (InteractionsController)
Preconditions: This component is available after the application initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: This component accepts HTTP POST requests containing an 'interaction' parameter
describing a user's interaction with a result, and returns an HTTP response indicating whether the interaction was
saved to the database.

Processing specifications: This component validates the content of an HTTP POST request. If the content does
not pass validation, an HTTP 400 response is returned, indicating a bad request. If the content passes validation,
the interaction data in the interaction parameter is persisted to the result_interaction table of the stats database,
and an HTTP 201 response is returned, indicating that a new resource was created.

Screen print: None.

Database Requirements: Persists interactions to the result_interaction table.

Postconditions. This component is only active when processing HTTP requests. Once one of the HTTP responses
described above is sent, it is inactive until the next HTTP request.

!  
! of !43 67

TEAM WAKATI 
�

8. File: layout.jade
Preconditions: This component is rendered by index.js after a user has accessed the application.

Interface specifications: When a user accesses the application, index.js renders this file. This file is responsible for
fetching and loading CSS and also establishing the HTML head of the document. See Figure 5.19 for a depiction
of template relationships.

Processing specifications: None.

Screen print:

Figure 5.19 Template Relationships in layout.jade

Database Requirements: None.

Postconditions: User leaves the webpage. 

!  
! of !44 67

TEAM WAKATI 
�

9. File: map.jade (Map View)
Preconditions: This component is a sub-template of layout.jade, and is rendered by index.js after a user has
accessed the application. See layout.jade (Figure 5.19) for a depiction of template relationships.

Interface specifications: A user is able to pan the map, zoom in, zoom out, and center the map on their location, if
the user allows the application to obtain their location. A user may select a map marker, which will cause a popup
with more information about that result appear above the marker, and the corresponding result to be highlighted in
the results component.

Processing specifications: None.

Screen print:

Figure 5.20 The map.jade View

Database Requirements: None

Postconditions: The user leaves the webpage. 

!  
! of !45 67

TEAM WAKATI 
�

10. File: map-controller.js (MapController)
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: The map controller (MapController) is primarily an event listener for the map element
displayed by map.jade, it also implements a subscriber ‘update’ method that accepts a data object argument that
is used to update map markers:

MapController.update(data)

Processing specifications: When a user changes the bounds of the map via map.jade, this component invokes a
search for results via the client-side search service (search-service.js). This component then waits for the search
service to invoke the update method described above. When the update method is invoked, the updated results
are displayed via map.jade.

Screen print: None.

Database Requirements: The map controller retrieves results via the client-side search service (search-service.js).

Postconditions: User leaves the webpage.

!  
! of !46 67

TEAM WAKATI 
�

11. File: neural-network.js (NeuralNetwork)
Preconditions: This component is available after the application initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: The neural network will provides a single method for retrieving and ordering search results
from the Code for Sacramento data source:

NeuralNetwork.getResults(query)

Processing specifications: In order to deliver the most relevant results, Benefisher is driven by a multilayer
perceptron (MLP) neural network [10, 11]. Inputs to the network come into the input layer (see Figure 5.21) in the
form of: user need, situation, and location. These inputs are normalized to either 0 (meaning that the input is not
present in the query) or 1 (meaning that the input is present), then passed along to a hidden layer, which is then
passed along to the output layer to determine which output is most appropriate for the series of inputs. This
system becomes powerful when the system is trained [10], by predicting the correct result and being confirmed as
correct or denied as incorrect (meaning that the user positively interacted with the result vs negatively interacting).
After being 'trained' as to what a correct result looks like, the connections between the various nodes shift weights
through a process known as "backpropagation" [11]. This weight shifting allows the network to become more
refined over time, giving the end user more relevant results.

!  
! of !47 67

TEAM WAKATI 
�

!

Figure 5.21 MLP Network Design.

!  
! of !48 67

TEAM WAKATI 
�

Screen Print: None.

Database Requirements: The neural network interfaces directly to the statistics database and the Code for
Sacramento data source. It uses data from those sources to compute the most relevant result for the given search
query.

Postconditions: The neural network is only active when performing searches. Once the search results have been
returned, it is inactive until the next search.  

!  
! of !49 67

TEAM WAKATI 
�

12. File: notification.jade
Preconditions: This component is available after the notification-service.js component has completed its
initialization.

Interface specifications: A user tries to interact with the Benefisher application, but an API that the application
interacts with is unvailable, or a user searches for services and there are no results available for that particular
search. A notification is displayed to inform the user that there is a problem, including options to remedy the
problem.

Processing specifications: None.

Screen print:

!

Figure 5.21 The notification.jade View

Database Requirements: None

Postconditions: The notification service (notification-service.js) removes the notification.  

!  
! of !50 67

TEAM WAKATI 
�

13. File: notification-service.js
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: This comonent provides a central notification dispatcher It offers several methods for
displaying new notifications with various ‘statuses’ that affect the duration and appearance of the notification:

NotificationService.addNotification(notification, opts)

NotificationService.info(message, opts)

NotificationService.success(message, opts)

NotificationService.warning(message, opts)

NotificationService.error(message, opts)

Processing specifications: The notification is added to the display and a timer is set. When the timer expires, the
notification is removed from the display.

Screen print: None.

Database Requirements: None.

Postconditions: The user leaves the webpage.

!  
! of !51 67

TEAM WAKATI 
�

14. File: results.jade (Results View)
Preconditions: This component is available for interaction after the results-controller.js component has completed
its initialization.

Interface specifications: A user scrolls over the results and is shown the result’s corresponding map marker. The
user is also able to interact with the result by clicking the icons that are present on the result.

Processing specifications: None.

Screen print:

!

Figure 5.22 The results.jade View

Database Requirements: None

Postconditions: User leaves the webpage.

!  
! of !52 67

TEAM WAKATI 
�

15. File: results-controller.js (ResultsController)
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: The results controller is primarily an event listener for the results displayed by results.jade.
It also implements a subscriber ‘update’ method that accepts a data object argument that causes the results
displayed in results.jade to be updated:

ResultsController.update(data)

Processing specifications: The results controller receives search results through the update method, and displays
them via results.jade.

Screen print: None.

Database Requirements: The results controller’s database interactions are managed by the search service (search-
service.js).

Postconditions: User leaves the webpage.

16. File: scripts.jade
Preconditions: This component is present after a user has accessed the application. It is required for the webpage,
as it is responsible for fetching all of the JavaScript files for the application.

Interface specifications: When a user navigates to the page, all JavaScript files that are required for the application
will be fetched and loaded on the client’s browser so that they can use the application.

Processing specifications: None.

Screen print: The contents of scripts.jade are not displayed.

Database Requirements: None

Postconditions: User leaves the webpage.

!  
! of !53 67

TEAM WAKATI 
�

17. File: search.jade (Search View)
Preconditions: This component is available for interaction after the search-controller.js component has completed
its initialization.

Interface specifications: A user is able to type their situation and need into the specified textboxes. The user is then
suggested keywords that are relevant to the entered text.

Processing specifications: None.

Screen print:

 !

Figure 5.23 The search.jade View

Database Requirements: None

Postconditions: User leaves the page. 

!  
! of !54 67

TEAM WAKATI 
�

18. File: search.js (SearchController - Server)
Preconditions: This component is available after the application initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: This compone

Processing specifications: When a user chooses search terms via search.jade, this component invokes a search
for results via the client-side search service (search-service.js). This component does not interact with the results
retrieved by the search service.

Screen print: None

Database Requirements: This component interacts with the Code for Sacramento data source via the search
service (search-service.js).

Postconditions:This component is only active when processing HTTP requests. Once the HTTP response
described above is sent, it is inactive until the next HTTP request.

19. File: search-controller.js (SearchController)
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: This component accepts HTTP GET requests containing search parameters, and returns
an HTTP response containing ordered results.

Processing specifications: This component issues an HTTP GET request to the Code for Sacramento data
source's REST API. When a successful HTTP response is received, results are upserted to the search_results
table, and the search query is saved to the search_query table. The results are then returned via HTTP response.

Screen print: None

Database Requirements: This component interacts with the Code for Sacramento data source via HTTP requests,
and with the application's search_query and search_results tables directly..

Postconditions: User leaves the page. 

!  
! of !55 67

TEAM WAKATI 
�

20. File: search-service.js
Preconditions: This component is available after the page initialization sequence depicted in Figure 3.1 is
completed.

Interface specifications: The search service provides a central service for other components to easily query the
Code for Sacramento data source and receive the results they need. This component implements the publisher-
subscriber design pattern, and offers a method for other components to subscribe. It also offers a method for
querying and receiving results from that query, as well as a method for ignoring a specific result:

SearchService.subscribe(subscriber)

SearchService.search(parameters)

SearchService.ignore(result)

Processing specifications: One or more components subscribe to the search service. When the 'search' method is
invoked, this component issues an HTTP request for results to the server. When a response to that request is
received, this component updates its subscribers with results from the response.

Screen print: None

Database Requirements: This component interacts with the database via the server-side search controller
(search.js) using HTTP requests.

Postconditions: User leaves the page.

!  
! of !56 67

TEAM WAKATI 
�

6. PERFORMANCE ANALYSIS
This section contains details of implementing the quality attributes detailed in the SRS, as well as any design
constraints to Benefisher that have come about as a result of the design and implementation process.

6.1 Required Quality Attributes.
These quality attributes must be addressed in order to deliver a product that meets the requirements, as outlined
in the SRS [2]. 

Reliability

To ensure reliability and relevance, Team Wakati has implemented a neural network machine learning pattern that
will analyze a record of search terms with search results. Upon a query for benefits, search terms will be paired
with results that users either click on or close. If the user clicks on a result, the query-result connection will be
given weight. If the user closes a result, the query-result connection will have its weight lessened. The neural
network algorithm will be continually improving and adjusting search results will optimize searches to the current
trends of a user base.

Maintainability

Team Wakati is allowing the sponsor Code for Sacramento access to the source code and databases at the end
of the project, where the sponsor will continually ensure the code is maintained and the data is correct and valid.
At the time of the handoff, Team Wakati will upload the Benefisher source code into the Git repository owned by
Code for Sacramento. Code for Sacramento will then use the repository to continue future improvements and
otherwise ensure continued maintinence of Benefisher.

Program Quality Attributes

To implement the code, Team Wakati is using the Git repository to coordinate code changes and releases. Each
member is using the JetBrains Webstorm 8.0.4 editor for consistency. Source code has been thoroughly
commented as to be clear to other team members as well as future maintainers.

Security

Information recorded in the database is central to the application, but not to the user, requiring no information
beyond the user's situation, need and location. Zip code searches are saved, generalizing the location that the
user is searching and increasing the accuracy of their search without identifying the user personally. Input data is
filtered before it is used for queries to protect against SQL injection, including insertion of false data or sabotage by
dropping tables.

Transferability and Conversion

The data used by Benefisher is set up to not be dependent on a particular framework, and can be transferred to
any other SQL framework 

!  
! of !57 67

TEAM WAKATI 
�

6.2 Optional Quality Attributes
To address the diversity of client hardware, Benefisher uses CSS media queries to detect a user’s screen size.
Benefisher adjusts its appearance as needed to best accommodate the user's device. Benefisher is designed to
be used with index fingers rather than thumbs, to avoid discomfort on larger mobile devices.

Operations

Benefisher is a web-based application and is set up to be continuously available. Continous availiablity means that
unplanned outages will be infrequent due to eliminating points of failure. The only two points of failure for
Benefisher should be the ISP avalibility of the connection hosting Benefisher or the server hosting Benefisher.
Continous availiability is also possible with continous operation where planned outages are avoided. Benefisher in
this case should only be taken offline for a few seconds in the event of specific changes such as a site design
update. Continuous availability is possible with the implementation, if the sponsor uses a continuous delivery
strategy.

Constraints

As a web based application, Benefisher will require an Internet connection for full functionality and cannot be used
in an offline capacity.

!  
! of !58 67

TEAM WAKATI 
�

7. RESOURCE ESTIMATES
This section describes the minimum and recommended system requirements to successfully run Benefisher.

Note: Because server load is difficult to predict, live testing is the best way to determine the hardware resources
Benefisher will require in production.

7.1 Minimum Software Requirements

Table 7.1 Minimum Software requirements

7.2 Minimum Hardware Requirements
The values below refer to the minimum available hardware required to run Benefisher and its associated database.

Table 7.2 Minimum Hardware requirements

Software Attribute Minimum

Operating System Linux - Ubuntu 13.10 Server or later

Database MySQL - version 4.1.22

Server Framework Node.js Framework - version 0.10.32 or later

Harware Attribute Minimum

CPU 2 CPU Cores

Memory 2 GB RAM

Disk Volume 100 GB

Internet Connectivity Ethernet

!  
! of !59 67

TEAM WAKATI 
�

7.3 Recommended Hardware Requirements

The values below refer to the recommended hardware required to run Benefisher and its associated database. A
dedicated web server is recommended when deploying Benefisher in production  

Table 7.3 Recommended Hardware requirements

Hardware Attribute Recommended

CPU 4 CPU Cores or more

Memory 16 GB RAM or more

Disk Volume 200 GB or more

Internet Connectivity Ethernet Connectivity

!  
! of !60 67

TEAM WAKATI 
�

8. SOFTWARE REQUIREMENTS TRACEABILITY
The matrix relates the design components to their associated requirements by listing the subsection numbers in
this document and the associated subsection numbers in the Software Requirements Specification Document.

Table 8.1 Software Requirements Traceability Matrix

Component SDS Section SRS Section

Map Component 3, 5.1, 5.2 2.1, 2.2, 2.3, 3.1

Search Component 3, 5.1, 5.2 2.1, 2.2, 2.3, 3.1

Results Component 3, 5.1, 5.2 2.1, 2.2, 2.3, 3.1

Notification Component 3, 5.1, 5.2 2.1, 2.2, 2.4, 3.5

Statistics Component 3, 4.1, 4.2, 5.1, 5.2 2.2, 3.1, 3.2, 3.5

Neural Network Component 3, 4.1, 4.2, 5.1, 5.2 3.1, 3.5

!  
! of !61 67

TEAM WAKATI 
�

9. APPROVALS
 
The signatures here indicate that the relevant stakeholders understand the contents of this document, and
approve of the outlined software design.

Table 9.1 Project Team, Advisor, and Sponsor Signatures  

Name Signature Date

Adrian Chambers

Anthony Cristiano

Daniel Green

James Doan

Jesse Rosato

Sponsor Representative

Meiliu Lu (Advisor)

!  
! of !62 67

TEAM WAKATI 
�

APPENDIX A
Entity Relationship Diagram.

Figure A.1 System ERD

!  
! of !63 67

TEAM WAKATI 
�

APPENDIX B
Listing of each database table and its attributes.

Table B.1 Queries Table Description

Queries Table

Column Name Type Description Use

id INT Unique id for a user
search query.

Primary key when
retrieving search queries.

bounds VARCHAR(255) A string describing the
map bounds of the query

Used to track search
queries.

terms VARCHAR(255) A comma separated
series of search terms.

Used to track search
queries.

user_postal_code VARCHAR(10) The postal code
associated with a user
search query.

Used to track queries by
geographic location.

createdAt DATETIME The date and time a user
search query was
executed.

Used to track search
queries over time.

updatedAt DATETIME The date and time a user
search query was
executed.

Used for record-keeping.

!  
! of !64 67

TEAM WAKATI 
�

Table B.2 Results Table Description

Results Table

Column Name Type Description Use

id INT Unique id for a user
search result.

Primary key when
retrieving search results.

externalId VARCHAR(255) Unique identifier for a
service related to a search
result.

Foreign key when
retrieving a service from a
search result.

name VARCHAR(255) The name of the service. For display to user.

lat FLOAT(18,12) The latitude of the
service's location.

Used to plot service
locations on map.

lng FLOAT(18,12) The longitude of the
service's location.

Used to plot service
locations on map.

description TEXT A description of the
service.

For display to user.

address VARCHAR(255) The human-readable
address of the service's
location.

For display to user.

hours VARCHAR(255) A text description of the
hours the service is
available.

For display to user.

phone VARCHAR(20) A formatted phone
number.

For display to user.

rawPhone VARCHAR(20) An unformatted phone
number.

Used to generate a phone
URL for mobile users.

email VARCHAR(255) An email address. For display to user.

url VARCHAR(255) A URL. For display to user.

createdAt DATETIME The date and time a result
was saved to the
database.

Used for record-keeping.

updatedAt DATETIME The date and time a result
was updated.

Used for record-keeping.

!  
! of !65 67

TEAM WAKATI 
�

Figure B.3 QueriesResults Table Description  

QueriesResults Table

Column Name Type Description Use

id Integer Unique ID for a query-
result relationship.

Unique ID for a query-
result relationship.

ResultId Integer Unique ID for a result. Foreign key when
retrieiving query-result
relationships.

QueryId Integer Unique ID for a query Foreign key when
retrieiving query-result
relationships.

!  
! of !66 67

TEAM WAKATI 
�

Table B.4 Interactions Table Description

Interactions Table

Column Name Type Description Use

id INT Unique identifier for a user
interaction with a search
result.

Primary key when
retrieving search result
interaction.

target VARCHAR(255) A description of the target
(e.g. “call”, or “get
directions”) of a user’s
interaction with a search
result.

	Used to track types of
interactions with search
results.

ResultId VARCHAR(255) Unique identifier for a
search result related to a
search result interaction.

Foreign key when
retrieving a search result
from a search result
search interaction.

createdAt DATETIME The date and time a user
interacted with a search
result.

Used to track interactions
over time.

updatedAt DATETIME The date and time an
interaction record was
updated

Used for record-keeping.

!  
! of !67 67

